NY Isles
GP: 35 | W: 17 | L: 14 | OTL: 4 | P: 38
GF: 78 | GA: 82 | PP%: 9.16% | PK%: 80.87%
GM : Thierry | Morale : 50 | Team Overall : 72
Next Games #575 vs Pittsburgh
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
NY Isles
17-14-4, 38pts
3
FINAL
2 Toronto
11-21-3, 25pts
Team Stats
W2StreakL4
8-7-1Home Record6-12-2
9-7-3Away Record5-9-1
7-3-0Last 10 Games1-8-1
2.23Goals Per Game2.26
2.34Goals Against Per Game3.14
9.16%Power Play Percentage19.33%
80.87%Penalty Kill Percentage76.76%
Buffalo
17-16-2, 36pts
0
FINAL
1 NY Isles
17-14-4, 38pts
Team Stats
L2StreakW2
10-7-2Home Record8-7-1
7-9-0Away Record9-7-3
3-6-1Last 10 Games7-3-0
2.69Goals Per Game2.23
2.94Goals Against Per Game2.34
12.40%Power Play Percentage9.16%
85.33%Penalty Kill Percentage80.87%
Pittsburgh
22-8-6, 50pts
Day 55
NY Isles
17-14-4, 38pts
Team Stats
W1StreakW2
10-5-4Home Record8-7-1
12-3-2Away Record9-7-3
8-2-0Last 10 Games7-3-0
3.06Goals Per Game2.23
2.47Goals Against Per Game2.23
16.20%Power Play Percentage9.16%
83.08%Penalty Kill Percentage80.87%
NY Isles
17-14-4, 38pts
Day 56
Pittsburgh
22-8-6, 50pts
Team Stats
W2StreakW1
8-7-1Home Record10-5-4
9-7-3Away Record12-3-2
7-3-0Last 10 Games8-2-0
2.23Goals Per Game3.06
2.34Goals Against Per Game3.06
9.16%Power Play Percentage16.20%
80.87%Penalty Kill Percentage83.08%
NY Isles
17-14-4, 38pts
Day 57
Toronto
11-21-3, 25pts
Team Stats
W2StreakL4
8-7-1Home Record6-12-2
9-7-3Away Record5-9-1
7-3-0Last 10 Games1-8-1
2.23Goals Per Game2.26
2.34Goals Against Per Game2.26
9.16%Power Play Percentage19.33%
80.87%Penalty Kill Percentage76.76%
Team Leaders
Mathew BarzalGoals
Mathew Barzal
8
Mathew BarzalAssists
Mathew Barzal
18
Mathew BarzalPoints
Mathew Barzal
26
Kyle PalmieriPlus/Minus
Kyle Palmieri
12
Ilya SorokinWins
Ilya Sorokin
11
Ilya SorokinSave Percentage
Ilya Sorokin
0.924

Team Stats
Goals For
78
2.23 GFG
Shots For
810
23.14 Avg
Power Play Percentage
9.2%
12 GF
Offensive Zone Start
39.1%
Goals Against
82
2.34 GAA
Shots Against
893
25.51 Avg
Penalty Kill Percentage
80.9%%
22 GA
Defensive Zone Start
41.5%
Team Info

General ManagerThierry
DivisionMetropolitan
ConferenceEastern
Captain
Assistant #1
Assistant #2


Arena Info

NameUBS Arena
Capacity16,000
Attendance15,259
Season Tickets3,200


Roster Info

Pro Team22
Farm Team7
Contract Limit29 / 50
Prospects23


Salary Cap

Estimated Season Salary Cap53,006,465$
Available Salary Cap11,993,535$
Special Salary Cap Value0$
Players In Salary Cap22


Finance

Year to Date Revenue20,015,324$
Year To Date Expenses23,405,258$
Estimated Season Revenue31,273,944$
Estimated Season Expenses29,601,207$
Current Bank Account1,372,707$
Projected Bank Account2,683,884$


Team History

This Season17-14-4 (38PTS)
History90-83-19 (0.469%)
Playoff Appearances2
Playoff Record (W-L)0-4
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Mathew BarzalX98.006438899069789789548972735466610508222712,000,000$
2Brock NelsonX99.005935907776749984507882676389790508123214,500,000$
3Kyle PalmieriX99.006437907068729977506879655988740507713334,000,000$
4Anders LeeX99.0076527372786998724960696760847805075N13314,000,000$
5Jean-Gabriel PageauX100.008043947166709969636655705181710507513133,500,000$
6Casey CizikasX100.007745887668668868545855735387740507303312,400,000$
7Pierre EngvallX99.005733918778699273496355675354570507302852,300,000$
8Pius SuterX100.006235927465698572506265685652540507102852,700,000$
9Simon Holmstrom (R)X100.00623592727565936747506370604143053700231863,333$
10Anthony BeauvillierX100.006636947765657965475945624870650506802712,000,000$
11Hudson FaschingX100.00663694727562666547624766494247050670281700,000$
12Julien GauthierX100.007350738479584971485460555545470506702611,000,000$
13Noah DobsonX100.006638908274809678519153765054530507912442,600,000$
14Ryan PulockX99.007038957475767768486347834965610507612933,700,000$
15Alexander RomanovX99.007441937474739865475847784952520507402441,800,000$
16Scott MayfieldX99.007147777679696264465030814064580507103131,500,000$
17Parker WotherspoonX100.007247797570666265475930764037450506802661,000,000$
Scratches
1Matt MartinX100.008965606876577656434143634797790506603521,800,000$
2Oliver WahlstromX100.006746767172605461455146585446450506302441,000,000$
3Adam PelechX87.286539887475727770486533854266630507402934,300,000$
Farm Team
1Kyle MacLeanX100.00734975646958546140535158513544050620251800,000$
2Ross JohnstonX100.008580256582548650423733634246510505903041,300,000$
3Ruslan Iskhakov (R)X100.00544761656066266647694944503339050590231855,000$
4Nikita Alexandrov (R)X100.006645767266554659415140564536440445902311,000,000$
5Samuel Bolduc (R)X100.00633790747857565744473965453640056640234900,000$
6Grant HuttonX100.00534857687449275543514162463443053570281775,000$
TEAM AVERAGE99.1668448174736675674860516750585605070
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Ilya Sorokin100.00758383726971757678738444480507812853,900,000$
2Hunter Shepard100.0062525273586464646260552543056640281775,000$
Scratches
Farm Team
1Kenneth Appleby100.0062515178646362605862552531050630291762,500$
TEAM AVERAGE100.006662627464666767666565314105268
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mathew BarzalNY IslesC31818269120237411129817.21%465621.191452710000041012052.39%62800000.7903000230
2Kyle PalmieriNY IslesRW3381321122018238220649.76%264019.40123131010001601154.47%12300000.6613000111
3Brock NelsonNY IslesC3381119080195610031588.00%267520.462242010500021041150.85%64500000.5624000202
4Pierre EngvallNY IslesLW2661117700133447193912.77%843516.77213875000071065.52%2900000.7801000220
5Noah DobsonNY IslesD31510152160313933151815.15%3571723.132352492000075100%000000.4200000002
6Ryan PulockNY IslesD2721113-41003629327196.25%3863023.350441586000073000%000000.4100000020
7Anders LeeNY IslesLW3576136275741856235312.50%663918.2811281160000311142.22%4500010.4104100320
8Jean-Gabriel PageauNY IslesC3567131140455040183815.00%654015.441124520000291057.37%50900000.4814000102
9Alexander RomanovNY IslesD354610-12955024419269.76%4676521.8811219108000087000%000000.2600001101
10Adam PelechNY IslesD35279-110043383211216.25%4572420.7103323100000087010%000000.2500000021
11Pius SuterNY IslesLW35549-1100113542103011.90%342912.280003310000122050.35%14300000.4201000010
12Parker WotherspoonNY IslesD3508873003026114100%2959617.04000237000029000%000000.2700000100
13Casey CizikasNY IslesC35257-48024564910364.08%239211.200004190000100153.78%35700000.3600000002
14Julien GauthierNY IslesRW35347-5221030173093810.00%140111.4600016000011042.11%1900000.3500101011
15Simon HolmstromNY IslesRW23437-160201528132414.29%336816.011121072000003045.00%2000000.3811000012
16Anthony BeauvillierNY IslesLW35224-6201313249268.33%442612.18000020000270034.62%2600000.1900000001
17Grant HuttonFarm Team 8 (NYI)D140443601463120%1121015.0600003000011000%000000.3800000000
18Samuel BolducFarm Team 8 (NYI)D121343208271514.29%1418915.8300002000011000%000000.4200000100
19Scott MayfieldNY IslesD21213118019231131118.18%1334916.63000425000020100%000000.1700000011
20Hudson FaschingNY IslesRW310220100715245140%03059.8500023000090038.46%1300000.1300000000
21Oliver WahlstromNY IslesRW8022220012130%0567.0500001000000040.00%500000.7100000000
22Matt MartinNY IslesLW25101424028752320.00%12078.3200001000040042.86%1400000.1000000000
Team Total or Average6307613821434268205566018102506199.38%2731036016.441223351871148000779515552.68%257600010.41521202141616
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ilya SorokinNY Isles25111030.9242.00149921506570300.737192410133
2Hunter ShepardNY Isles64200.8742.43321001310300000616000
Team Total or Average31151230.9172.0818212163760030193026133


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Adam Pelech (1 Way Contract)NY IslesD291994-08-16CANNo210 Lbs6 ft3NoNoN/AYesYes32024-07-13FalseFalsePro & Farm4,300,000$4,300,000$2,431,967$No4,300,000$4,300,000$-------4,300,000$4,300,000$-------NoNo-------NHL Link
Alexander Romanov (1 Way Contract)NY IslesD242000-01-06RUSNo215 Lbs6 ft1NoNoN/AYesYes42024-07-31FalseFalsePro & Farm1,800,000$1,800,000$1,018,033$No1,800,000$1,800,000$1,800,000$---------------NoNoNo------Link / NHL Link
Anders Lee (1 Way Contract)NY IslesLW331990-07-03USANo227 Lbs6 ft3YesNoN/AYesYes12024-07-13FalseFalsePro & Farm4,000,000$4,000,000$2,262,295$No---------------------------Link / NHL Link
Anthony Beauvillier (1 Way Contract)NY IslesLW271997-06-08CANNo180 Lbs5 ft11NoNoN/AYesYes12024-07-13FalseFalsePro & Farm2,000,000$2,000,000$1,131,148$No---------------------------Link / NHL Link
Brock Nelson (1 Way Contract)NY IslesC321991-10-15USANo210 Lbs6 ft4NoNoN/AYesYes12024-07-13FalseFalsePro & Farm4,500,000$4,500,000$2,545,082$No---------------------------Link / NHL Link
Casey Cizikas (1 Way Contract)NY IslesC331991-02-27CANNo194 Lbs5 ft11NoNoN/AYesYes12024-07-13FalseFalsePro & Farm2,400,000$2,400,000$1,357,377$No---------------------------NHL Link
Hudson Fasching (1 Way Contract)NY IslesRW281995-07-28USANo209 Lbs6 ft3NoNoN/AYesYes12024-07-13FalseFalsePro & Farm700,000$700,000$395,902$No---------------------------Link / NHL Link
Hunter ShepardNY IslesG281995-11-07USANo215 Lbs6 ft0NoNoTrade2024-07-15YesYes12024-07-13FalseFalsePro & Farm775,000$775,000$438,320$No---------------------------Link
Ilya Sorokin (1 Way Contract)NY IslesG281995-08-04RUSNo195 Lbs6 ft3NoNoN/AYesYes52024-07-31FalseFalsePro & Farm3,900,000$3,900,000$2,205,738$No3,900,000$3,900,000$3,900,000$3,900,000$--------------NoNoNoNo-----Link / NHL Link
Jean-Gabriel Pageau (1 Way Contract)NY IslesC311992-11-11CANNo185 Lbs5 ft11NoNoN/AYesYes32024-07-13FalseFalsePro & Farm3,500,000$3,500,000$1,979,508$No3,500,000$3,500,000$-------3,500,000$3,500,000$-------NoNo-------Link / NHL Link
Julien Gauthier (1 Way Contract)NY IslesRW261997-10-15CANNo226 Lbs6 ft4NoNoN/AYesYes12024-07-13FalseFalsePro & Farm1,000,000$1,000,000$565,574$No---------------------------Link / NHL Link
Kyle Palmieri (1 Way Contract)NY IslesRW331991-02-01USANo196 Lbs5 ft11NoNoN/AYesYes32024-07-31FalseFalsePro & Farm4,000,000$4,000,000$2,262,295$No4,000,000$4,000,000$----------------NoNo-------NHL Link
Mathew Barzal (1 Way Contract)NY IslesC271997-05-26CANNo190 Lbs6 ft1NoNoN/AYesYes12024-07-13FalseFalsePro & Farm2,000,000$2,000,000$1,131,148$No---------------------------Link / NHL Link
Matt Martin (1 Way Contract)NY IslesLW351989-05-08CANNo215 Lbs6 ft3NoNoN/AYesYes22024-07-31FalseFalsePro & Farm1,800,000$1,800,000$1,018,033$No1,800,000$-----------------No--------NHL Link
Noah Dobson (1 Way Contract)NY IslesD242000-01-07CANNo200 Lbs6 ft4NoNoN/AYesYes42024-07-31FalseFalsePro & Farm2,600,000$2,600,000$1,470,492$No2,600,000$2,600,000$2,600,000$---------------NoNoNo------Link / NHL Link
Oliver Wahlstrom (1 Way Contract)NY IslesRW242000-06-13USANo200 Lbs6 ft2NoNoN/AYesYes42024-07-31FalseFalsePro & Farm1,000,000$1,000,000$565,574$No1,000,000$1,000,000$1,000,000$---------------NoNoNo------Link / NHL Link
Parker WotherspoonNY IslesD261997-08-24CANNo195 Lbs6 ft1NoNoN/AYesYes62024-07-31FalseFalsePro & Farm1,000,000$1,000,000$565,574$No1,000,000$1,000,000$1,000,000$1,000,000$1,000,000$-------------NoNoNoNoNo----Link
Pierre Engvall (1 Way Contract)NY IslesLW281996-05-31SWENo215 Lbs6 ft5NoNoN/AYesYes52024-07-31FalseFalsePro & Farm2,300,000$2,300,000$1,300,820$No2,300,000$2,300,000$2,300,000$2,300,000$--------------NoNoNoNo-----Link / NHL Link
Pius Suter (1 Way Contract)NY IslesLW281996-05-24CHENo179 Lbs5 ft11NoNoTrade2024-07-28YesYes52024-07-31FalseFalsePro & Farm2,700,000$2,700,000$1,527,049$No2,700,000$2,700,000$2,700,000$2,700,000$--------------NoNoNoNo-----Link / NHL Link
Ryan Pulock (1 Way Contract)NY IslesD291994-10-06CANNo216 Lbs6 ft2NoNoN/AYesYes32024-07-13FalseFalsePro & Farm3,700,000$3,700,000$2,092,623$No3,700,000$3,700,000$-------3,700,000$3,700,000$-------NoNo-------NHL Link
Scott Mayfield (1 Way Contract)NY IslesD311992-10-14USANo220 Lbs6 ft5NoNoN/AYesYes32024-07-13FalseFalsePro & Farm1,500,000$1,500,000$848,361$No1,500,000$1,500,000$-------1,500,000$1,500,000$-------NoNo-------NHL Link
Simon HolmstromNY IslesRW232001-05-24SWEYes215 Lbs6 ft2NoNoN/ANoNo12024-07-13FalseFalsePro & Farm863,333$863,333$488,278$No---------------------------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2228.50205 Lbs6 ft22.682,379,015$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
52,338,333$34,100,000$32,300,000$15,300,000$9,900,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anders LeeMathew BarzalKyle Palmieri32122
2Pierre EngvallBrock NelsonSimon Holmstrom29122
3Pius SuterJean-Gabriel PageauJulien Gauthier24122
4Anthony BeauvillierCasey CizikasHudson Fasching15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Noah DobsonRyan Pulock32122
2Alexander Romanov29122
3Scott MayfieldParker Wotherspoon24122
4Noah DobsonRyan Pulock15122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anders LeeMathew BarzalKyle Palmieri60122
2Pierre EngvallBrock NelsonSimon Holmstrom40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Noah DobsonRyan Pulock60122
2Alexander Romanov40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Mathew BarzalBrock Nelson60122
2Kyle PalmieriAnders Lee40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Noah DobsonRyan Pulock60122
2Alexander Romanov40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Mathew Barzal60122Noah DobsonRyan Pulock60122
2Brock Nelson40122Alexander Romanov40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mathew BarzalBrock Nelson60122
2Kyle PalmieriAnders Lee40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Noah DobsonRyan Pulock60122
2Alexander Romanov40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anders LeeMathew BarzalKyle PalmieriNoah DobsonRyan Pulock
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anders LeeMathew BarzalKyle PalmieriNoah DobsonRyan Pulock
Extra Forwards
Normal PowerPlayPenalty Kill
Jean-Gabriel Pageau, Casey Cizikas, Pius SuterJean-Gabriel Pageau, Casey CizikasPius Suter
Extra Defensemen
Normal PowerPlayPenalty Kill
Scott Mayfield, Parker Wotherspoon, Scott MayfieldParker Wotherspoon,
Penalty Shots
Mathew Barzal, Brock Nelson, Kyle Palmieri, Anders Lee, Jean-Gabriel Pageau
Goalie
#1 : Ilya Sorokin, #2 : Hunter Shepard
Custom OT Lines Forwards
Mathew Barzal, Brock Nelson, Kyle Palmieri, Anders Lee, Jean-Gabriel Pageau, Pierre Engvall, Pierre Engvall, Casey Cizikas, Pius Suter, Simon Holmstrom, Anthony Beauvillier
Custom OT Lines Defensemen
Noah Dobson, Ryan Pulock, , Alexander Romanov, Scott Mayfield


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Anaheim11000000312110000003120000000000021.0003580001203171311020911143266.67%30100.00%053999953.95%550106051.89%26849454.25%2519226115
2Boston1010000034-11010000034-10000000000000.0003690010202655160327101711100.00%5180.00%053999953.95%550106051.89%26849454.25%2215257115
3Buffalo32100000550220000004221010000013-240.6675712010230762625250582514501516.67%7185.71%053999953.95%550106051.89%26849454.25%744966223920
4Calgary1010000013-2000000000001010000013-200.00012300100021133501971210500.00%6183.33%053999953.95%550106051.89%26849454.25%2517197147
5Carolina20001010642100000103211000100032141.0006101600211343131314949181629400.00%8187.50%053999953.95%550106051.89%26849454.25%473352132512
6Chicago22000000826110000002111100000061541.000814220061104718131603176329111.11%20100.00%053999953.95%550106051.89%26849454.25%513642142613
7Colorado11000000211000000000001100000021121.0002240000202812610040201013200.00%50100.00%053999953.95%550106051.89%26849454.25%2315256115
8Columbus11000000633000000000001100000063321.000612180031202710980276418500.00%20100.00%053999953.95%550106051.89%26849454.25%2417247115
9Dallas1000000123-1000000000001000000123-110.50023500011122821083410414300.00%2150.00%053999953.95%550106051.89%26849454.25%2416277136
10Detroit32100000853211000005321100000032140.667814220034107325202807216255912216.67%80100.00%053999953.95%550106051.89%26849454.25%765265213819
11Edmonton10000010211000000000001000001021121.00022400010223311842222137114.29%10100.00%053999953.95%550106051.89%26849454.25%2719238147
12Florida1010000024-21010000024-20000000000000.000246000110204880375613200.00%3166.67%053999953.95%550106051.89%26849454.25%2013257136
13Los Angeles11000000514110000005140000000000021.0005101500023022661002361313200.00%3166.67%053999953.95%550106051.89%26849454.25%2618216125
14Montreal2110000056-1110000004311010000013-220.5005914003110522211190402217306233.33%5340.00%053999953.95%550106051.89%26849454.25%493543132612
15NY Rangers1000000134-1000000000001000000134-110.50036900012034109116278415800.00%20100.00%053999953.95%550106051.89%26849454.25%2719257116
16New Jersey2020000035-21010000012-11010000023-100.000369000120261088060221033400.00%5260.00%053999953.95%550106051.89%26849454.25%402653152512
17Ottawa2010000116-5000000000002010000116-510.250123000100286139455102631600.00%11190.91%053999953.95%550106051.89%26849454.25%473251162512
18Pittsburgh1010000023-11010000023-10000000000000.00024600110031129100218217600.00%10100.00%053999953.95%550106051.89%26849454.25%2518237105
19Seattle2010100034-11010000013-21000100021120.50035800101144168191391126218112.50%13284.62%053999953.95%550106051.89%26849454.25%483246132512
20St-Louis2010010036-31000010012-11010000024-210.250369001200351113110661624441200.00%10370.00%053999953.95%550106051.89%26849454.25%452952162412
21Toronto11000000321000000000001100000032121.000369001200226124026812142150.00%5180.00%053999953.95%550106051.89%26849454.25%2418226126
22Utah1010000002-21010000002-20000000000000.0000000000001634903310630100.00%30100.00%053999953.95%550106051.89%26849454.25%2214246136
23Vancouver11000000211000000000001100000021121.000235001010311016502310212500.00%10100.00%053999953.95%550106051.89%26849454.25%2315247126
24Washington1010000006-6000000000001010000006-600.000000000000321013903910814300.00%4325.00%053999953.95%550106051.89%26849454.25%2417237115
Total351314021237882-4167700110363331967020134249-7380.5437813821601242426781026625028332893273270556131129.16%1152280.87%053999953.95%550106051.89%26849454.25%849587834256444221
_Since Last GM Reset351314021237882-4167700110363331967020134249-7380.5437813821601242426781026625028332893273270556131129.16%1152280.87%053999953.95%550106051.89%26849454.25%849587834256444221
_Vs Conference21710010124757-10104500010242311135010022334-11200.4764786133011416153490159155169195431651543407479.46%661478.79%053999953.95%550106051.89%26849454.25%506352503154265131
_Vs Division814010112025-53020001067-1512010011418-470.4382038580065731936561601522372441263000.00%22672.73%053999953.95%550106051.89%26849454.25%190134202599749

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3538W27813821681089327327055601
All Games
GPWLOTWOTL SOWSOLGFGA
35131421237882
Home Games
GPWLOTWOTL SOWSOLGFGA
167701103633
Visitor Games
GPWLOTWOTL SOWSOLGFGA
196720134249
Last 10 Games
WLOTWOTL SOWSOL
531010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
131129.16%1152280.87%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
266250283322424267
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
53999953.95%550106051.89%26849454.25%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
849587834256444221


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
316Utah2NY Isles0LBoxScore
432NY Isles2Dallas3LXXBoxScore
547NY Isles2Colorado1WBoxScore
768NY Isles2St-Louis4LBoxScore
881Montreal3NY Isles4WBoxScore
1098Detroit2NY Isles1LBoxScore
12119NY Isles2New Jersey3LBoxScore
13130Florida4NY Isles2LBoxScore
14152Anaheim1NY Isles3WBoxScore
15155NY Isles6Columbus3WBoxScore
16168NY Isles1Buffalo3LBoxScore
17185NY Isles3NY Rangers4LXXBoxScore
19198Pittsburgh3NY Isles2LBoxScore
20209NY Isles1Ottawa2LXXBoxScore
22231New Jersey2NY Isles1LBoxScore
24249NY Isles2Edmonton1WXXBoxScore
26265NY Isles2Vancouver1WBoxScore
27273NY Isles2Seattle1WXBoxScore
29299NY Isles1Calgary3LBoxScore
30308NY Isles3Detroit2WBoxScore
32330St-Louis2NY Isles1LXBoxScore
33341Detroit1NY Isles4WBoxScore
34353Boston4NY Isles3LBoxScore
36366NY Isles0Washington6LBoxScore
37383Buffalo2NY Isles3WBoxScore
39398NY Isles1Montreal3LBoxScore
41416Seattle3NY Isles1LBoxScore
42428Carolina2NY Isles3WXXBoxScore
43438NY Isles0Ottawa4LBoxScore
44450Los Angeles1NY Isles5WBoxScore
46464Chicago1NY Isles2WBoxScore
48489NY Isles6Chicago1WBoxScore
49500NY Isles3Carolina2WXBoxScore
51532NY Isles3Toronto2WBoxScore
53552Buffalo0NY Isles1WBoxScore
55575Pittsburgh-NY Isles-
56581NY Isles-Pittsburgh-
57590NY Isles-Toronto-
58607Toronto-NY Isles-
60633NY Isles-Boston-
63663NY Isles-Las Vegas-
65680NY Isles-Utah-
67699Ottawa-NY Isles-
68712Philadelphia-NY Isles-
69731San Jose-NY Isles-
70745Columbus-NY Isles-
73772Philadelphia-NY Isles-
74785Carolina-NY Isles-
76803Colorado-NY Isles-
77816NY Isles-Philadelphia-
78829NY Isles-Tampa Bay-
79838NY Isles-Florida-
80850Las Vegas-NY Isles-
81872NY Isles-Winnipeg-
83886NY Isles-Minnesota-
85913Dallas-NY Isles-
86925NY Rangers-NY Isles-
87933NY Isles-Boston-
89948Nashville-NY Isles-
91970NY Isles-NY Rangers-
92978Winnipeg-NY Isles-
951012NY Isles-San Jose-
961020NY Isles-Anaheim-
971034NY Isles-Los Angeles-
Trade Deadline --- Trades can’t be done after this day is simulated!
991050Edmonton-NY Isles-
1001070Florida-NY Isles-
1021080NY Isles-Pittsburgh-
1031094Montreal-NY Isles-
1041108Calgary-NY Isles-
1051126Columbus-NY Isles-
1061139Vancouver-NY Isles-
1081160NY Isles-Tampa Bay-
1101175NY Isles-Carolina-
1111186Tampa Bay-NY Isles-
1121208Minnesota-NY Isles-
1131222Washington-NY Isles-
1151241NY Isles-Nashville-
1171254NY Rangers-NY Isles-
1181265NY Isles-Philadelphia-
1191277NY Isles-New Jersey-
1201296Washington-NY Isles-
1221312NY Isles-Columbus-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Capacity50005000200040000
Ticket Price155996949300
Attendance79,93979,75529,75354,6920
Attendance PCT99.92%99.69%92.98%85.46%0%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
25 15259 - 95.37% 1,250,958$20,015,324$16000105

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches SalariesSpecial Salary Cap Value
23,405,258$ 52,338,333$ 31,238,333$ 0$ 0$
Salary Cap Per DaysSalary Cap To DateLuxury Taxe TotalPlayers In Salary CapPlayers Out of Salary Cap
429,003$ 23,405,258$ 0$ 22 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
31,273,944$ 69 429,003$ 29,601,207$

Team Total Estimate
Estimated Season Expenses Current Bank Account Projected Bank Account
29,962,767$ 1,372,707$ 2,683,884$
Estimated Season Salary CapAvailable Salary CapMaximum Salary CapOver Minimum Salary Cap
53,006,465$ 11,993,535$ 65,000,000$ 8,006,465$



Depth Chart

Left WingCenterRight Wing
Anders LeeAGE:33PO:0OV:75
Pierre EngvallAGE:28PO:0OV:73
Pius SuterAGE:28PO:0OV:71
Anthony BeauvillierAGE:27PO:0OV:68
Matt MartinAGE:35PO:0OV:66
Ross JohnstonAGE:30PO:0OV:59
Nikita Alexandrov (R)AGE:23PO:0OV:59
Mathew BarzalAGE:27PO:0OV:82
Brock NelsonAGE:32PO:0OV:81
Jean-Gabriel PageauAGE:31PO:0OV:75
Casey CizikasAGE:33PO:0OV:73
Kyle MacLeanAGE:25PO:0OV:62
Ruslan Iskhakov (R)AGE:23PO:0OV:59
Kyle PalmieriAGE:33PO:0OV:77
Simon Holmstrom (R)AGE:23PO:0OV:70
Hudson FaschingAGE:28PO:0OV:67
Julien GauthierAGE:26PO:0OV:67
Oliver WahlstromAGE:24PO:0OV:63

Defense #1Defense #2Goalie
Noah DobsonAGE:24PO:0OV:79
Ryan PulockAGE:29PO:0OV:76
Alexander RomanovAGE:24PO:0OV:74
Adam PelechAGE:29PO:0OV:74
Scott MayfieldAGE:31PO:0OV:71
Parker WotherspoonAGE:26PO:0OV:68
Samuel Bolduc (R)AGE:23PO:0OV:64
Grant HuttonAGE:28PO:0OV:57
Ilya SorokinAGE:28PO:0OV:78
Hunter ShepardAGE:28PO:0OV:64
Kenneth ApplebyAGE:29PO:0OV:63

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
ProspectTeam NameDraft YearOverall PickInformationLast Trade DateLink
Aaron HuglenNY Isles201987
Aatu RatyNY Isles2021302024-08-01
Alex JefferiesNY Isles2020108
Alexander LjungkrantzNY Isles202077
Blade JenkinsNY Isles2018137
Bode WildeNY Isles201844
Cole EisermanNY Isles202415
Cole SpicerNY Isles2022127
Danny NelsonNY Isles202351
Dmitry GamzinNY Isles2024102
Ethan ProcyszynNY Isles202470
Evan VierlingNY Isles2020123
Jake PivonkaNY Isles2018106
Jesse NurmiNY Isles2023113
Jesse PulkkinenNY Isles202446
Justin GillNY Isles2023145
Marcus GidlofNY Isles2024134
Nicholas MoldenhauerNY Isles202269
Quinn FinleyNY Isles202267
Reece NewkirkNY Isles2019153
Simon ForsmarkNY Isles2022101
Tristan LennoxNY Isles202175
Tyce ThompsonNY Isles2019130

Draft Picks

Year R1R2R3R4R5
2025
2026
2027
2028
2029
Conditional Draft Picks



No News Found in News Database. Please create a news.


NY Isles Trade History




[11/20/2024 4:00:11 AM] NY Isles lines for next game are empty. Current rosters/lines are not erased.
[11/20/2024 4:00:10 AM] Game 552 - Adam Pelech from NY Isles is injured (Bruised Right Foot) and is out for 2 weeks.



Adam Pelech is out for 1 week because of a Bruised Right Foot Injury.



NY Isles Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Brock Nelson1857487161143211332362911.76%36380320.56183149134000912449.56%20.85415
2Mathew Barzal17242901328221343554718.92%26341319.854263087213156245.91%00.7719
3Noah Dobson1952796123-289016723623911.30%226443522.751737541510330410%10.5500
4Anders Lee19959531121910724217350311.73%33361718.18142640110000310442.81%20.62524
5Jean-Gabriel Pageau1974557102-158629733438211.78%34320916.291316297310154358.28%00.64817

NY Isles Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Ilya Sorokin97414580.9062.5655784323825270400.80947
2Philipp Grubauer522114100.8972.6828686312812460100.69623
3Keith Kinkaid55201870.9062.4727214511211940100.59122
4Hunter Shepard64200.8742.43321001310300000
5Thomas Greiss32100.9511.30184014820001.0003

NY Isles Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2022823028021057228226241141301643121118341161501414107108-19122839562308669263142084664685676105218065968113973105818.71%2783786.69%21265248150.99%1315250952.41%643124051.85%1994138019656031052528
202382264103372186222-364114210113195114-194112200224191108-17771863245100364625012201968163767753229567574813733015217.28%3096778.32%31224245549.86%1285264448.60%605121449.84%1979137219575941038521
2024351314021237882-4167700110363331967020134249-7387813821601242426781026625028332893273270556131129.16%1152280.87%053999953.95%550106051.89%26849454.25%849587834256444221
Total Regular Season199698307141412492530-3898354102884252265-13101344205668240265-252064928571349012154178139334913161115721636190536816071699332674212216.44%70212682.05%53028593551.02%3150621350.70%1516294851.42%482333404757145425351271
Playoff
202240400000816-82020000057-22020000039-608162400323010037312931574541869333.33%18383.33%05513740.15%7917046.47%396857.35%8354116315324
Total Playoff40400000816-82020000057-22020000039-608162400323010037312931574541869333.33%18383.33%05513740.15%7917046.47%396857.35%8354116315324

NY Isles Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Josh Bailey42240015450.00%26716.79112200000066.67%01.1900
2Jean-Gabriel Pageau40440681070%46716.78011100000055.81%01.1900
3Anders Lee420200321315.38%16817.01101200000050.00%00.5900
4Brock Nelson4112-2442214.76%08320.92101500000041.67%00.4800
5Adam Pelech4022-5010420%510025.0201120000000%00.4000

NY Isles Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Keith Kinkaid10100.8655.46550053700000
2Thomas Greiss20020.9173.131340078400000
3Philipp Grubauer20100.8893.75640043600000